Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

نویسندگان

  • Tal Linzen
  • Emmanuel Dupoux
  • Yoav Goldberg
چکیده

The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture’s grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings, the LSTM achieved very high overall accuracy (less than 1% errors), but errors increased when sequential and structural information conflicted. The frequency of such errors rose sharply in the language-modeling setting. We conclude that LSTMs can capture a non-trivial amount of grammatical structure given targeted supervision, but stronger architectures may be required to further reduce errors; furthermore, the language modeling signal is insufficient for capturing syntax-sensitive dependencies, and should be supplemented with more direct supervision if such dependencies need to be captured.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs

We present a transition-based parser that jointly produces syntactic and semantic dependencies. It learns a representation of the entire algorithm state, using stack long short-term memories. Our greedy inference algorithm has linear time, including feature extraction. On the CoNLL 2008–9 English shared tasks, we obtain the best published parsing performance among models that jointly learn synt...

متن کامل

Improving Speech Recognition by Revising Gated Recurrent Units

Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs ...

متن کامل

The Statistical Recurrent Unit

Sophisticated gated recurrent neural network architectures like LSTMs and GRUs have been shown to be highly effective in a myriad of applications. We develop an un-gated unit, the statistical recurrent unit (SRU), that is able to learn long term dependencies in data by only keeping moving averages of statistics. The SRU’s architecture is simple, un-gated, and contains a comparable number of par...

متن کامل

Nested LSTMs

We propose Nested LSTMs (NLSTM), a novel RNN architecture with multiple levels of memory. Nested LSTMs add depth to LSTMs via nesting as opposed to stacking. The value of a memory cell in an NLSTM is computed by an LSTM cell, which has its own inner memory cell. Specifically, instead of computing the value of the (outer) memory cell as c t = ft ct−1 + it gt, NLSTM memory cells use the concatena...

متن کامل

An annotation scheme for Persian based on Autonomous Phrases Theory and Universal Dependencies

A treebank is a corpus with linguistic annotations above the level of the parts of speech. During the first half of the present decade, three treebanks have been developed for Persian either originally or subsequently based on dependency grammar: Persian Treebank (PerTreeBank), Persian Syntactic Dependency Treebank, and Uppsala Persian Dependency Treebank (UPDT). The syntactic analysis of a sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • TACL

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016